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ABSTRACT

In this paper we present a robust approach to the registration

of white matter tractographies extracted from DT-MRI scans.

The fibers are projected into a high dimensional feature space

defined by the sequence of their 3D coordinates. Adaptive

mean-shift (AMS) clustering is applied to extract a compact

set of representative fiber-modes (FM). Each FM is assigned

to a multivariate Gaussian distribution according to its popu-

lation thereby leading to a Mixture of Gaussians (MoG) repre-

sentation for the entire set of fibers. The registration between

two fiber sets is treated as the alignment of two MoGs and is

performed by maximizing their correlation ratio. A 9 param-

eter affine transform is recovered and eventually refined to a

12 parameters affine transform using an innovative mean-shift

(MS) based registration refinement scheme presented in this

paper. The validation of the algorithm on intra-subject data

demonstrates its robustness against two main tractography ar-

tifacts: interrupted and deviating fiber tracts.

Index Terms— registration, Gaussian mixture model,

white matter, tractography, mean-shift

1. INTRODUCTION

The increasing popularity of DT-MRI among brain researchers

and clinicians has created the need for robust registration

methods for white matter (WM) tractographies that allow for

longitudinal (intra-subject) and population (inter-subjects)

studies. Registration is performed at the tensor level before

the tractographies are computed so that the same ROI can

be used in the aligned brains [1, 2, 3]. In comparison to the

scalar case, tensor registration involves much more data (6

numbers per voxel) and requires an additional step of tensor

reorientation. An alternative is to perform registration be-

tween scalar images such as fractional anisotropy and then

apply the recovered transform to the fibers. A joint clustering

step of both tractography’s fibers is then applied to obtain

correspondences at clusters level [4].

Recently, methods have been proposed for direct registration

between fiber sets [5, 6]. WM fibers, which consist of a se-

quence of connected 3D points, are more informative than

the original tensor field and may therefore improve registra-

tion robustness. In [5], curvature and torsion features have

been used to describe each fiber in a multi-scale framework.

A mean square difference is then used to measure similar-

ity between fibers at different scale levels. Most similar

fibers are matched and used to fit a global rigid transform.

The method is based on rotation and translation invariance

of the curvature and torsion features, therefore it is limited

to rigid registration. In [6], the fibers are represented by

their spatial coordinates sequences and considered as points

in a high dimensional feature space. Affine Registration is

then resolved by an efficient iterative closest feature point

algorithm that tackles the computational bottleneck of high

dimensional search by implementing approximate nearest

neighbors techniques. As fiber-based registration methods

rely on tractography results, they are naturally exposed to

common tractography artifacts such as interrupted or devi-

ating fiber tracts. These issues have not been addressed in

previous fiber based registration algorithms.

In this work we propose an innovative tractography regis-

tration method that is robust to large amounts of interrupted

and deviating fiber tracts. The main contributions of this

work are: 1) Automated selection of a compact and reliable

set of representative fibers by adaptive mean shift clustering.

2) Fiber registration is treated as the alignment of two con-

tinuous distributions. 3) The connectivity constraint for the

points belonging to the same fiber as is naturally enforced

by the feature space representation. 4) Innovative mean-shift

based method to refine FMs positions thereby increasing reg-

istration accuracy.

The rest of this paper is organized as follows: In section 2

we describe the proposed algorithm. In section 3 we perform

quantitative validation on intra-subject registration for various

amounts of fiber interruptions and deviations. Conclusions

and discussion are presented in section 4.

2. METHODS

The proposed registration algorithm consists of 5 main steps

as described in the following subsections.

2.1. Preprocessing

The fibers generated by tractography softwares are repre-

sented by variable length sequences of 3D coordinates. Fibers

692978-1-4244-2003-2/08/$25.00 ©2008 IEEE ISBI 2008



shorter than 10mm are removed since most of them corre-

spond to artifacts located outside the brain. Each fiber is

then re-sampled at 20 equally spaced points creating a con-

stant length representation. The number of sampling points

is an empirical compromise between dimensionality and fi-

delity to the original representation. The concatenation of the

resulting (x,y,z) samples generates a 60 x 1 feature vector.

Tractography softwares may produce one out of two flipped

representations for each fiber. This may cause two spatially

adjacent fibers to be distant in the feature space. In order

to standardize fibers representation, the distance between

each fiber ending points is calculated in each axis obtaining

the triplet d = {dx, dy, dz}, and the direction of maximum

distance is extracted. The points sequence is flipped if this

distance if negative.

2.2. Clustering using Adaptive Mean-shift

Once a uniform length representation for the fibers is achieved,

it is necessary to find a more compact yet reliable description

of the entire fiber set in order to reduce the amount of fibers .

This goal is achieved by applying clustering separately to the

model and target fiber sets to be registered.

In this work we use the adaptive mean-shift for fiber cluster-

ing. Each cluster is represented by a selected fiber hereafter

termed fiber-mode (FM) as will be explained shortly. The

FMs are equivalent to landmarks used in point based regis-

tration, which in our case are extracted automatically by the

clustering. The adaptive Mean-Shift is an iterative procedure

which estimates the local maxima, or modes, of the underly-

ing density distribution for a given data set in a feature space

[7].

Consider n vectors xi∈ �d. To derive the mean-shift (MS)

we begin with defining the sample point estimator at location

x:

f̂K(x) =
1
n

n∑
i=1

1
hd

i

k(‖x − xi

hi
‖2) (1)

Where k is the profile of the kernel K such that

K(x) = cd,k k(‖x‖2) > 0 ‖x‖ ≤ 1 (2)

cd,k is a normalization factor and the bandwidth hi defines the

range of influence of the kernel centered at xi. In this work, hi

is set to the distance between xi and its pth nearest neighbor.

Taking the adaptive bandwidths leads to the AMS. Provided

that the derivative of the profile k exists, another profile g(x)

and its kernel G(x) are defined:

g(x) = −k
′
(x) G(x) = cd,g g(‖x‖2) (3)

It can be shown that by taking the gradient of Eq. 1, the fol-

lowing expression for the MS vector is obtained:
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=
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Equation 4 shows that the mean shift vector is proportional to

the normalized gradient of density estimate computed from

kernel K. Thus, the mean shift vector points at the direction

of maximum density increase. Moreover, since the magnitude

of the mean shift vector depends on the inverse of the den-

sity estimation using kernel G, it gradually decreases as we

move with the MS vector into high density region and eventu-

ally converge into a local maximum of density or a stationary

point. MS clustering is obtained by starting from every data

point and moving iteratively along the MS vector according

to Eq. 5 until convergence [8].
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i=1
1
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(5)

In the following we will refer to each convergence point as a

FM. Usually the number of modes is much smaller than the

original number of data points. It is important to note that the

number of modes is an output of the MS algorithm and is not

pre-set by the user. This is particularly useful for tractogra-

phy data for which the number of similar fibers clusters may

be difficult to set a-priori.

In Figure 1 we illustrate the results of the AMS clustering.

Figure 1a shows the model fibers set which consists of about

95000 fibers. Figure 1b shows the 195 fiber modes obtained

by applying the AMS algorithm on the full model fiber set.

Figure 1c shows the 195 clusters represented by these FMs,

each cluster is colored by a unique color. Figure 1d illustrates

the correspondence between clusters and anatomical tracts by

manually extracting 6 specific modes which represent the cor-

ticospinal tract.

(a) (b)

(c) (d)

Fig. 1. (a) The original set (about 95000 fibers); (b) clustering

into 195 FMs by the AMS; (c) the clustered fibers; (d) six

specific modes representing the corticospinal tract

2.3. Gaussian mixture modeling

Following the clustering, we obtain model and target FM sets

representing M and N clusters, respectively. Each FM repre-

sents a population of fibers, these populations are of different

sizes and spatial distributions. In the following, we will treat

registration as alignment to two MoGs [9]. For that purpose
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we model each FM set by a MoG.

Each Gaussian is defined in 60-dimensional feature space, by

assigning each FM with 3 parameters: weight, mean and co-
variance matrix, as follows: The weight is the ratio between

the number of fibers assigned to the FM and the total number

of fibers. The mean is the feature vector of the corresponding

FM. The covariance matrix is defined to be λI where I is the

identity matrix and λ a scalar constant. For each Gaussian, λ
is defined to be the average variance of all the entries in the

corresponding mean vector. The resulting MoGs have M and

N components respectively.

2.4. Registration of MoGs

Once the MoGs representations are obtained, the task of reg-

istering two FM sets is shifted to registering their respective

MoGs. Formally, consider two MoGs f(x), g(x) of size M and

N respectively:

f(x) =
M∑
i=1

αiΦ(x|μi, Σi) g(x) =
N∑

j=1

βjΦ(x|νj ,Γj) (6)

where Φ denotes a 60-dimensional normal distribution. A

9 parameters affine transformation (rotation, translation and

scaling in xyz axes) relating these MoGs can be parameter-

ized by a non-singular block diagonal 60 x 60 matrix A and a

translation vector t of size 60 x 1. Each block element along

the diagonal of A is the basic affine transformation matrix

of size 3 x 3 built out of the 9 parameters which relates to

a single point in 3D space. t is simply the concatenation of

the translation vector repetitively. In order to reorient the co-

variance matrices, A is factorized using polar decomposition

A = QS which results in an orthogonal matrix Q and a sym-

metric matrix S [9]. Transforming f(x) using the above men-

tioned transformation we get:

fA,t (x) =
M∑
i=1

αiΦ(x|Aμi + t,QΣiQ
T ) (7)

We find the optimal transformation between these MoGs us-

ing a correlation based cost function. The correlation between

two MoGs is given by the expression:

σfg =
∫

fgdx =
M∑
i=1

N∑
j=1

αiβj

∫
Φ(x|μi,Σi)Φ(x|νj ,Γj)dx.

(8)

Using the formula
∫

Φ(x|μ,Σ)Φ(x|ν, Γ)dx = Φ(0|μ − ν, Σ + Γ) (9)

we get

σfg =
M∑
i=1

N∑
j=1

αiβjΦ(0|μi − νj , Σi + Γj). (10)

The 9 parameters affine transformation relating these MoGs

is found by maximizing the following correlation ratio:

E =
σ2

fg

σ2
fσ2

g

. (11)

where σ2
f and σ2

g are the respective MoGs autocorrelations.

The proposed cost function is differentiable, thus gradi-

ent based optimization methods such as the Quasi-Newton

method can be used to maximize it.

2.5. Refinement of the registration

Using the estimated 9 parameters transform, the model modes

are warped towards the target modes. Next we embed the

warped model modes into the full target fibers set and run

a MS procedure from each warped mode according to Eq. 5

where, in this case xi are the full target fibers set and y0 are the

warped model modes. Assuming the warped modes are ly-

ing within the basin of attraction of their corresponding target

modes, they will reach them during the MS procedure. This

step generates a set of corresponding (non-warped) model and

target modes from which we estimate a 12 parameters affine

transform using a robust RANSAC scheme on the set of cor-

responding coordinates [10].

(a) (b)

Fig. 2. Model and Target modes for fiber interruptions (a) and

fiber deviations (b). First row - FM misaligned sets. Second

row - FM sets after MoG registration. Third row - FM sets

after registration refinement
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(b)
Fig. 3. RMSE results for various amounts of noisy fibers for

(a) fiber splitting (b) fiber deviations.
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3. EXPERIMENTAL RESULTS

In this section we present initial results for intra-subject DTI

data. Tractographies were obtained from a real DTI brain1

using DTIstudio [11]. Intra-subject data was simulated by ap-

plying a predefined 9 parameters affine transformation2 on a

set of tractographies. Two mechanisms were used to simu-

late the above mentioned tractographies artifacts. Fiber in-

terruptions were simulated by splitting varying percents of

randomly selected fibers at arbitrary points along the fibers.

Fiber deviations were simulated by randomly selecting vary-

ing amounts of fibers, splitting them at arbitrary points creat-

ing two tails and reconnecting one of the tails to the nearest

fiber tail within the entire fiber set. Only fiber extremities

closer than 10mm are considered for reconnection. In order

to preserve fibers smoothness, tails may only be reconnected

when the resulting fiber turning angle is smaller than 70 de-

grees. In the following experiments, the model consists of the

original fiber set. The target set is obtained by adding one

of the noise artifacts to the transformed fibers set. The al-

gorithm’s accuracy is measured by calculating the root mean

square error (RMSE) between the warped model and the tar-

get fiber sets. AMS clustering was applied to the model and

target sets for p = 200. In Figure 2 we illustrate the registra-

tion results at different steps of the algorithm for 6% noise.

Left and right columns refer to fiber interruptions and devia-

tions, respectively. In the first row we show the initially mis-

aligned model (blue) and target (red) FM sets. In second row

we show the warped model (blue) and the target (red) FM sets

after MoG registration. All the optimization procedures for

MoG registrations are initialized using the identity transfor-

mation. The FM sets after registration refinement are shown

in the third row. Results for the interrupted and deviated fibers

are plotted in Figures 3a and 3b, respectively. The RMSE be-

tween the registered sets is plotted for different amounts of

artifact noise. We observe robustness across a wide range of

noise amounts for both types of artifacts. The RMSE is re-

duced by a factor of 20 for noise amounts up to 10% as the

RMSE for the originally misaligned fiber sets is 0.043.

4. DISCUSSION

This paper proposed a method for direct registration of brain

white matter fiber sets without requiring MRI or tensor reg-

istration. The main advantage of performing registration at

fibers level rather than at voxels or tensors level is the con-

nectivity information entailed in the fiber representation. The

AMS clustering provides with a set anatomically consistent

1DTI brain No. 6 downloaded from Johns Hopkins University medical

MRI lab, 15 brains data set http://lbam.med.jhmi.edu/.
2Transformation parameters: {θx = 8, θy = 3, θz = 12 , tx = 6, ty = 15, tz

= -10, sx = 1.1, sy = 0.9, sz = 1} where θi denote the rotation angle around

axis i, si denotes scaling factor in axis i and ti denotes translation in axis i (i
= x,y,z)

FMs which significantly reduce the amount of data. Reg-

istration is based on modeling each of the FM sets using

continuous MoGs and optimizing their correlation ratio. The

continuous modeling enables the usage of gradient based op-

timization methods. The AMS based refinement procedure

improves registration by handling local variations in modes

positions due to noise. Our method demonstrated robustness

to large amounts of tractography artifacts noise on a real brain

from Johns Hopkins University data set1. These results were

confirmed on a second real brain3. We are currently gathering

statistics on the entire 15 brains Johns Hopkins data set. In

future work we shall further optimize the algorithm param-

eters and investigate their influence on registration results.

Furthermore, we intend to apply the method to inter-subject

data and extend it to non-linear transformations.
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